Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions
نویسندگان
چکیده
Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d-π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes.
منابع مشابه
Propargyltrimethylsilanes as Allene Equivalents in Transition Metal-Catalyzed [5 + 2] Cycloadditions
Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsi...
متن کاملRh(I)-catalyzed intramolecular [3 + 2] cycloaddition reactions of 1-ene-, 1-yne- and 1-allene-vinylcyclopropanes.
New Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition reactions of 1-ene-, 1-yne and 1-allene-vinylcyclopropanes have been developed, affording an efficient and versatile synthesis of cyclopentane- and cyclopentene-embedded bicyclic structures.
متن کاملRh(II)-catalyzed cycloadditions of 1-tosyl 1,2,3-triazoles with 2H-azirines: switchable reactivity of Rh-azavinylcarbene as [2C]- or aza-[3C]-synthon.
The Rh(II)-catalyzed formal [3+2] and [3+3] cycloadditions of 1-tosyl 1,2,3-triazoles with 2H-azirines have been developed, which enable the efficient synthesis of polysubstituted 3-aminopyrroles and 1,2-dihydropyrazines, respectively. The reported [3+2] cycloaddition represents the first application of 1-sulfonyl 1,2,3-triazole as a [2C]-component in relevant cycloaddition reactions.
متن کاملRh(I)-catalyzed formal [2+2+2] cycloadditions of 1,6-diynes with potassium (Z)-(2-bromovinyl)trifluoroborate: a new strategy and a facile entry to polysubstituented benzene derivatives.
A new strategy for Rh(I)-catalyzed [2+2+2] cycloadditions of 1,6-diynes with potassium (Z)-(2-bromovinyl)trifluoroborate as the third two-atom unit has been realized, which provides a facile entry to polysubstituented benzene derivatives.
متن کاملTransition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles.
Eight-membered carbocycles are found in a wide variety of natural products that exhibit a broad range of biological and medicinal activities (cf. the most potent anticancer drug, taxol). However, the synthesis of eight-membered carbocycles is quite challenging as traditional approaches are met with entropic and enthalpic penalties in the ring-forming transition states. These negative effects ca...
متن کامل